Difference between revisions of "AGM-62A Walleye I (505 kg)"

From War Thunder Wiki
Jump to: navigation, search
(Added About template)
(Edits)
Line 1: Line 1:
 
{{About
 
{{About
| about = '''{{PAGENAME}}'''
+
| about = TV-guided '''{{PAGENAME}}'''
| usage = the "extended-range" TV-guided munition of the same designation
+
| usage = the "extended-range" Walleye
 
| link = AGM-62A Walleye I ER (510 kg)
 
| link = AGM-62A Walleye I ER (510 kg)
 
}}
 
}}

Revision as of 23:23, 14 February 2022

Introducing Wiki 3.0
This page is about the TV-guided AGM-62A Walleye I (505 kg). For the "extended-range" Walleye, see AGM-62A Walleye I ER (510 kg).

Description

The AGM-62A Walleye I guided bomb (scale is approximate)


The AGM-62A Walleye I is an American guided bomb for aircraft use. It is one of the first guided bomb introduced into War Thunder in Update "Ground Breaking".

Vehicles equipped with this weapon

General info

Tell us about the tactical and technical characteristics of the bomb.

Effective damage

Describe the type of damage produced by this type of bomb (high explosive, splash damage, etc)

Comparison with analogues

Give a comparative description of bombs that have firepower equal to this weapon.

Usage in battles

Describe situations when you would utilise this bomb in-game (vehicle, pillbox, base, etc)

Pros and cons

Pros:

  • Precision-guided bomb allows for greater flexibility on where to release weapon
  • Once locked-on and released, the aircraft can begin egressing from the area
  • Bomb can continue tracking moving visual targets upon release

Cons:

  • Large size means only a few can be carried by aircraft
  • Limited effectiveness in night conditions, since it's TV-guided
  • TV-guided camera views from the aircraft's frontal arc, requires pointing the aircraft at the general location of the enemy to begin targeting

History

The original concept of a glide-bomb was a bomb that was essentially equipped with wings to allow a bombardier in the cockpit of an aircraft to guide the bomb into the target by means of wires or radio control, typically by using a joystick. Examples include the early VB-1 AZON, which was in essence a bolt-on tail assembly for the AN-M65A1 thousand-pound general purpose bomb that could steer the bomb left and right, to the gargantuan VB-13/ASM-A-1 TARZON, which mated a radio-control system for an earlier development of AZON called RAZON to the massive British-designed 12,000-pound Tallboy Bomb, designed to be dropped from the B-29 Superfortress on large, hard targets, such as enemy ships and factory complexes. The two bombs, for their time, were relatively successful, but still exposed several inherent vulnerabilities to their design.
Rifle! An early Walleye's seeker display from footage, presumably from combat in vietnam.note the footage grain and the eight lines running crosswise transposed over the screen. These eight lines show where azimuth and elevation are in relation to the bomb, as well as outlining a square that shows what the bomb is currently guiding onto.
Rifle! An early Walleye's seeker footage, presumably from combat in Vietnam. Note the footage grain and the eight lines running crosswise transposed over the screen. These eight lines show where azimuth and elevation are in relation to the bomb, as well as outlining a square that shows what the bomb is currently guiding onto.
The first problem was that in order to guide such a weapon, an aircraft must fly straight and level, as well as staying in a position where the bomb can still be seen from the bombardier's sight, or at the very least, the cockpit. The technology of the time limited the AZON and TARZON to Azimuth Only, which meant that the bomb required the bombardier to aim the bomb like a regular bomb, and then provide minor course corrections using the azimuth system. The bomb could not, for example, be steered into the path of an oncoming train, nor track and eventually hit a ship moving towards the dropping aircraft. AZON and TARZON were thus usually employed against large, wide targets, like railway bridges, marshalling yards, factories, and dams, with great success. Destroying a moving target was very much. Other attempts at self-guided bombs of the era, such as the ASM-N-2 "Bat", used radar. Radar technology, while having come far since the turn of the century, was very much still in its infancy compared to the modern day, and the Bat was easily confused by ground clutter.

The Walleye's genesis came about thanks to a TV-loving NAS China Lake engineer named Norman Kay. In his spare time, Kay enjoyed creating television sets, and in 1958, he developed a camera that could follow and trace moving items in a picture by using a "blip" that it could project. By using a piece of circuit-board, Kay had just created the first device capable of tracking moving objects by using the difference in contrast between said item and the background. Later refinements would follow, and with a team of fellow engineers including Jack Crawford, Dave Livingston, George Lewis, Larry Brown, Steve Brugler, Bob Cunningham and long-time friend William H. Woodworth, would engineer the bomb that would eventually become Walleye. Among other challenges that they faced and defeated were refining the bomb's trajectory, eliminating the use of vacuum tubes in order to both simplify production and to ensure that the bomb was capable of making the turns and twists needed by a guided weapon, and withstand the shock of carrier catapult takeoffs, and the dilemma of procuring funding- initially by wheedling funding away from the AIM-9 Sidewinder project, which was concurrent to the tv seeker's development. By 1963, the development of the bomb had become official, and after a period of competition between various firms, Martin-Marietta won the contract in 1966 for full-rate production.

The AGM-62 was engineered to have a link between the seeker and a small TV monitor in the launch aircraft's cockpit, which is what would be used to select the target for the seeker. In the words of one of the engineers- the seeker "wasn't smart enough" to know that "a bridge was a bridge", but it could use the contrast between the bridge and whatever surrounded it and home in on the patch of contrast differential. Proposed features for the first iteraton included a datalink, which would not be integrated on initial Walleye I variants. However, the camera could still be used to see where the bomb was going, which would be important for allowing fire-and-forget capability. Pilots could now drop a bomb and then immediately turn away from the target, monitoring the bomb's progress, and once the data-link ability was integrated, provide course corrections for the bomb.

Walleye I used a thousand-pound warhead from the Mark 83 1000 pound General-Purpose bomb, recently developed in the 1950s in response to the need for lower-drag bombs. The unit was initially powered by a heavy set of lithium-ion batteries, but these were soon replaced by a ram air turbine on the back of the bomb, giving it the distinctively large propellor, different from propellor-driven tail and nose fuzes on older GP bombs like the AN-M65A1 that its predecessors had used. Large, triangular fins driven by hydraulic actuators were attached onto the rear, allowing the bomb to move left and right, and stabilize on the target. The seeker was the first-ever fully solid-state TV camera in existence. The bomb was meant to incorporate a revolutionary new data-link feature to allow the pilot to aim and steer the bomb while in flight, but tihs feature was temporarily dropped due to time constraints. Later versions of the bomb would reincorporate this feature into the bomb, allowing mid-flight course corrections. The bombs would find great success in Vietnam, chalking up successful missions such as the final destruction of the infamous Thanh Hoa Bridge and several successful missions against power plants, including a raid that destroyed Hanoi's main source of power a mere two days after Ho Chi Minh's birthday. The bomb would continue to be used, including with the data-link upgrade, during the Gulf War in 1991, after which it was gradually retired from US Navy and Air Force service as newer warshots, such as the GBU-15, AGM-65, JDAM and improved Paveway Variants came into service, and improved targeting pods allowed for laser-guided bombs to be more easily guided onto target.

Media

Excellent additions to the article would be video guides, screenshots from the game, and photos.

See also

External links


High-explosive and general-purpose bombs
USA 
100 lb  AN-M30A1
250 lb  AN-M57 · LDGP Mk 81
300 lb  H.E. M31
500 lb  AN-M64A1 · LDGP Mk 82
600 lb  H.E. M32
750 lb  M117 cone 45
1,000 lb  AN-M65A1 · AN-M65A1 Fin M129 · LDGP Mk 83
2,000 lb  AN-M66A2 · LDGP Mk 84
3,000 lb  M118
4,000 lb  AN-M56
Germany 
50 kg  SC50JA
200 kg  Sprengbombe
250 kg  SC250JA
400 kg  Sprengbombe
450 kg  Sprengbombe 68/70
500 kg  SC500K
1,000 kg  SC1000L2
1,800 kg  SC1800B
2,500 kg  SC2500
USSR 
25 kg  AO-25M-1
50 kg  FAB-50sv
100 kg  FAB-100sv · FAB-100M-43 · OFAB-100
250 kg  FAB-250sv · FAB-250M-43 · FAB-250M-44 · FAB-250M-46 · FAB-250M-54 · FAB-250M-62 · OFAB-250sv · OFAB-250-270
500 kg  FAB-500sv · FAB-500M-43 · FAB-500M-44 · FAB-500M-46 · FAB-500M-54 · FAB-500M-62
1,000 kg  FAB-1000 · FAB-1000M-43 · FAB-1000M-44
1,500 kg  FAB-1500M-46
3,000 kg  FAB-3000M-46
5,000 kg  FAB-5000
Britain 
250 lb  G.P. Mk.IV · M.C. Mk.I
500 lb  G.P. Mk.IV · H.E. M.C. Mk.II · M.C. Mk.I
540 lb  Mk.M2
1,000 lb  G.P. Mk.I · M.C. Mk.I · L.D H.E. M.C. Mk.1 · H.E. M.C. Mk.13
4,000 lb  H.C. Mk.II · H.C. Mk.IV
8,000 lb  H.C. Mk.II
12,000 lb  H.C Mk.I
Japan 
Army 
50 kg  Type 94 GPHE
100 kg  Type 94 GPHE
250 kg  Type 92 GPHE
500 kg  Type 92 GPHE
Navy 
60 kg  Type 97 Number 6
250 kg  Type 98 Number 25 · Type Number 25 Model 2
500 kg  Type Number 50 Model 2
800 kg  Number 80 Mod. 1
China 
100 kg  100-2
250 kg  Type 250-2 · 250-3
500 kg  500-3
1500 kg  1500-2
3000 kg  3000-2
Italy 
50 kg  GP 50
100 kg  GP 100T · SAP 100M
230 kg  BAFG-230
250 kg  GP 250
460 kg  BAFG-460
500 kg  GP 500
800 kg  GP 800
920 kg  BAFG-920
France 
50 kg  D.T. No.2 · G.A. MMN. 50 · Type 61C
75 kg  G2 Navale
100 kg  No.1
250 lb  SAMP Mk 81
150 kg  I2 Navale
200 kg  No.1
500 lb  SAMP Mk 82
250 kg  Matra 25E · SAMP Type 25
400 kg  SAMP Type 21
1,000 lb  SAMP Mk 83
500 kg  No.2
2,000 lb  SAMP Mk 84
Sweden 
50 kg  mb m/37AT · sb m/42 · sb m/47 · Model 1938
100 kg  Model 1938
120 kg  sb m/61 · m/71
250 kg  mb m/40 · mb m/50
500 kg  mb m/41 · mb m/56
600 kg  mb m/50
Israel 
100 kg  100/50 kg G.P.
250 kg  250/50 kg G.P.
360 kg  360/50 kg G.P.
500 kg  500/50 kg G.P.
See also  List of armour-piercing bombs · List of guided bombs · List of retarded bombs