Difference between revisions of "F4U Corsair (History)"
CobraKingII (talk | contribs) m (→Design) (Tag: Visual edit) |
m (Edits.) |
||
Line 3: | Line 3: | ||
=== Origin === | === Origin === | ||
− | In 1938 the Navy wanted to find a design for a carrier-based fighter with more performance than the Brewster F2A and Grumman F4F. The design contract was given to Vought, based on their proposal, which featured a plane dependent on the Pratt and Whitney R-2800 engine. The design included an inverted gull wing shape. This was necessary because the engine required a large propeller, which needed | + | In 1938 the Navy wanted to find a design for a carrier-based fighter with more performance than the Brewster F2A and Grumman F4F. The design contract was given to Vought, based on their proposal, which featured a plane dependent on the Pratt and Whitney R-2800 engine. The design included an inverted gull-wing shape. This was necessary because the engine required a large propeller, which needed large ground clearance. This would require very long landing gear, except the inverted gull-wing shape allowed shorter landing gear while maintaining the necessary ground clearance. The prototype, named XF4U-1 was armed with 4 machine guns, two .50 calibre machine guns in the wings and two .30 calibre machine guns on the engine cowling. The XF4U-1 first flew on May 29, 1940, and became the first single-engine plane to fly over 400 mph. Before Vought was allowed to produce the plane though, they had to increase its armament, as it was deemed insufficient based on data from Europe. Its armament was changed to six .50 machine guns, and it was ordered into production. A self-sealing fuel tank in the fuselage above the wings caused the cockpit to be moved aft as well. The engine was also upgraded to the R-2800-8. The Navy ordered 584 F4U-1's on April 2, 1941. |
== Design == | == Design == | ||
=== Powerplant === | === Powerplant === | ||
− | The F4U was powered by a Pratt and Whitney R-2800 engine. This was the most powerful and largest engine available when the F4U was being developed. An engine that powerful required a large propeller, 13 feet and 4 inches in diameter. The | + | The F4U was powered by a Pratt and Whitney R-2800 engine. This was the most powerful and largest engine available when the F4U was being developed. An engine that powerful required a large propeller, 13 feet and 4 inches in diameter. The propellers used were the three-bladed versions up until the F4U-4 when it was upgraded to a four-bladed propeller. |
=== Wings and Landing Gear === | === Wings and Landing Gear === | ||
Line 36: | Line 36: | ||
==== Royal New Zealand Air Force ==== | ==== Royal New Zealand Air Force ==== | ||
− | In the Pacific, the Royal New Zealand Air Force (RNZAF) was equipped with Curtiss P-40 Warhawks. Although these aircraft had shown their age and weaknesses when compared to the Japanese aircraft they faced, the RNZAF squadrons performed admirably in aerial combat. Because of this, the United States decided to allow New Zealand to use F4U Corsairs | + | In the Pacific, the Royal New Zealand Air Force (RNZAF) was equipped with Curtiss P-40 Warhawks. Although these aircraft had shown their age and weaknesses when compared to the Japanese aircraft they faced, the RNZAF squadrons performed admirably in aerial combat. Because of this, the United States decided to allow New Zealand to use F4U Corsairs since they were not yet being used on carriers. They were first delivered to New Zealand in 1944, replacing P-40 Warhawks and SBD Dauntlesses. Corsairs equipped all ten RNZAF fighter squadrons in the Pacific Because it arrived so late in the war, there were not very many Japanese planes for the RNZAF Corsairs to engage, at least in the zones they operated in. Mostly they supported the ground forces from New Zealand, Australia, and the United States. After the war, in 1945, all but one (No. 14) RNZAF squadrons disbanded. Squadron No. 14 was based in Japan until 1947 when the Corsair was retired from service. |
==== Captured Corsairs ==== | ==== Captured Corsairs ==== | ||
Line 48: | Line 48: | ||
=== "Football War" === | === "Football War" === | ||
− | The last combat the F4U Corsair saw in | + | The last combat the F4U Corsair saw in its long career was during the 1969 "Football War". This war was fought between Honduras and El Salvador and was presumably initiated after a soccer game between the two countries. The air forces of the two countries were equipped with only propeller-driven aircraft, and the war was the last conflict involving combat between propeller-driven aircraft. On 17 July 1969, Captain Fernando Soto of the Honduran Air Force shot down a Cavalier Mustang and two FG-1 Corsairs of the Salvadoran Air Force. No Honduran aircraft were shot down during the course of the war, even though private American pilots with experience flying P-51s and F4Us were hired to fly combat missions by El Salvador. |
== US World War 2 Statistics == | == US World War 2 Statistics == | ||
Line 95: | Line 95: | ||
'''Gregory "Pappy" Boyington''' | '''Gregory "Pappy" Boyington''' | ||
− | The Marine Corp's top scoring ace, achieving 22 confirmed kills in an F4U-1A as part of VMF-214. | + | The Marine Corp's top-scoring ace, achieving 22 confirmed kills in an F4U-1A as part of VMF-214. |
'''Kenneth A. Walsh''' | '''Kenneth A. Walsh''' | ||
Line 128: | Line 128: | ||
; XF4U-1: The prototype for the F4U-1. It had a Pratt and Whitney R-2800 engine. | ; XF4U-1: The prototype for the F4U-1. It had a Pratt and Whitney R-2800 engine. | ||
− | ; F4U-1 (Corsair Mk I): The first production F4U. It had the | + | ; F4U-1 (Corsair Mk I): The first production F4U. It had the “birdcage” canopy and low seating position. It had a more powerful Pratt and Whitney R-2800-8 engine. |
; FG-1: F4U-1 built by Goodyear for the Marine Corps. They had wings that could not be folded. | ; FG-1: F4U-1 built by Goodyear for the Marine Corps. They had wings that could not be folded. | ||
− | ; F4U-1A (Corsair Mk II): This is not an official designation, but was used post-war to differentiate late production F4U-1s from early production F4U-1s. Mid-to-late production Corsairs saw the canopy changed to a clear-view canopy with only 2 frames in order to increase field of vision, and also a new windscreen that was easier to see through. This allowed the rear-view windows to be removed from the design. The pilot’s seat was also raised, to allow better view over the long nose. This was the first design to incorporate the stall strip on the leading edge of the right wing and the improved landing gear oleo-struts. These changes allowed the Corsair to be used in carrier landings. F4U-1As later incorporated a new R-2800-8W water injected engine, which was more powerful. F4U-1As in FAA service were known as Corsair Mk II, and had 8 in clipped off their wings, in order to fit on the Royal Navy aircraft carriers. | + | ; F4U-1A (Corsair Mk II): This is not an official designation, but was used post-war to differentiate late production F4U-1s from early production F4U-1s. Mid-to-late production Corsairs saw the canopy changed to a clear-view canopy with only 2 frames in order to increase field of vision, and also a new windscreen that was easier to see through. This allowed the rear-view windows to be removed from the design. The pilot’s seat was also raised, to allow better view over the long nose. This was the first design to incorporate the stall strip on the leading edge of the right-wing and the improved landing gear oleo-struts. These changes allowed the Corsair to be used in carrier landings. F4U-1As later incorporated a new R-2800-8W water-injected engine, which was more powerful. F4U-1As in FAA service were known as Corsair Mk II, and had 8 in clipped off their wings, in order to fit on the Royal Navy aircraft carriers. |
; FG-1A: F4U-1As built by Goodyear for the Marine Corps. They had wings that could not be folded. | ; FG-1A: F4U-1As built by Goodyear for the Marine Corps. They had wings that could not be folded. | ||
; F3A-1 (Corsair Mk III): F4U-1 license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. Known as the Corsair Mk III in FAA service. None of these Corsairs saw frontline service because of their production defects. | ; F3A-1 (Corsair Mk III): F4U-1 license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. Known as the Corsair Mk III in FAA service. None of these Corsairs saw frontline service because of their production defects. | ||
; F4U-1B: F4U-1s modified for Fleet Air Arm usage. This designation was given post-war. | ; F4U-1B: F4U-1s modified for Fleet Air Arm usage. This designation was given post-war. | ||
− | ; F4U-1D (Corsair Mk II): An F4U-1 with an R-2800-8W water injected engine, which gave 250 hp more power. It could carry double the rockets of the F4U-1A, and as such had to have bomb pylons and rocket tabs bolted onto the plane, causing drag. Despite this, it still had a considerable range, as the ability to mount an additional belly drop tank. It had the “blown” canopy, with only a single piece. | + | ; F4U-1D (Corsair Mk II): An F4U-1 with an R-2800-8W water-injected engine, which gave 250 hp more power. It could carry double the rockets of the F4U-1A, and as such had to have bomb pylons and rocket tabs bolted onto the plane, causing drag. Despite this, it still had a considerable range, as the ability to mount an additional belly drop tank. It had the “blown” canopy, with only a single piece. |
; FG-1D (Corsair Mk IV): F4U-1D built by Goodyear. It had the wingtips clipped for FAA service. | ; FG-1D (Corsair Mk IV): F4U-1D built by Goodyear. It had the wingtips clipped for FAA service. | ||
; F3A-1D (Corsair Mk III): F4U-1D license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. This version, although different than the F3A-1, was still known as the Corsair Mk III in FAA service. It had the wingtips clipped for FAA service. | ; F3A-1D (Corsair Mk III): F4U-1D license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. This version, although different than the F3A-1, was still known as the Corsair Mk III in FAA service. It had the wingtips clipped for FAA service. | ||
; F4U-1C: These were F4U-1Ds but had four 20 mm AN/M2 cannons, instead of six .50 in machine guns. Machine guns were preferred for aerial combat, but the 20 mm cannons were proven in a ground attack role. | ; F4U-1C: These were F4U-1Ds but had four 20 mm AN/M2 cannons, instead of six .50 in machine guns. Machine guns were preferred for aerial combat, but the 20 mm cannons were proven in a ground attack role. | ||
− | ; F4U-1P: An F4U-1 but with photo reconnaissance equipment. | + | ; F4U-1P: An F4U-1 but with photo-reconnaissance equipment. |
; XF4U-2: A night fighter variant, with two auxiliary fuel tanks. | ; XF4U-2: A night fighter variant, with two auxiliary fuel tanks. | ||
; F4U-2: F4U-1s but with the outboard right machine gun removed and replaced with an Airborne Intercept radar on the outboard starboard wing. It was intended to be a night fighter. | ; F4U-2: F4U-1s but with the outboard right machine gun removed and replaced with an Airborne Intercept radar on the outboard starboard wing. It was intended to be a night fighter. | ||
Line 148: | Line 148: | ||
; F4U-4B: A version of the F4U-4 modified for FAA use, but was never given to the FAA. Instead, it was used in US service. | ; F4U-4B: A version of the F4U-4 modified for FAA use, but was never given to the FAA. Instead, it was used in US service. | ||
; F4U-4C: F4U-4s with four 20 mm AN/M2 cannons instead of six .50 in machine guns. | ; F4U-4C: F4U-4s with four 20 mm AN/M2 cannons instead of six .50 in machine guns. | ||
− | ; F4U-4E: Night fighter variant of the F4U-4 with an APS-4 search radar on the starboard | + | ; F4U-4E: Night fighter variant of the F4U-4 with an APS-4 search radar on the starboard wingtip. Many had four 20 mm AN/M2 cannons instead of six .50 in machine guns, but it was not standard. |
− | ; F4U-4N: Night fighter variant of the F4U-4 with an APS-6 search radar on the starboard | + | ; F4U-4N: Night fighter variant of the F4U-4 with an APS-6 search radar on the starboard wingtip. Many had four 20 mm AN/M2 cannons instead of six .50 in machine guns, but it was not standard. |
; F4U-4K: Drone variant of the F4U-4. | ; F4U-4K: Drone variant of the F4U-4. | ||
; F4U-4P: Photo reconnaissance variant of the F4U-4. | ; F4U-4P: Photo reconnaissance variant of the F4U-4. |
Revision as of 14:36, 31 March 2020
Writing in process... This article is being edited by the member CobraKingII (start date). Other participants are requested to not make any changes while this warning is here. |
Contents
Development
Origin
In 1938 the Navy wanted to find a design for a carrier-based fighter with more performance than the Brewster F2A and Grumman F4F. The design contract was given to Vought, based on their proposal, which featured a plane dependent on the Pratt and Whitney R-2800 engine. The design included an inverted gull-wing shape. This was necessary because the engine required a large propeller, which needed large ground clearance. This would require very long landing gear, except the inverted gull-wing shape allowed shorter landing gear while maintaining the necessary ground clearance. The prototype, named XF4U-1 was armed with 4 machine guns, two .50 calibre machine guns in the wings and two .30 calibre machine guns on the engine cowling. The XF4U-1 first flew on May 29, 1940, and became the first single-engine plane to fly over 400 mph. Before Vought was allowed to produce the plane though, they had to increase its armament, as it was deemed insufficient based on data from Europe. Its armament was changed to six .50 machine guns, and it was ordered into production. A self-sealing fuel tank in the fuselage above the wings caused the cockpit to be moved aft as well. The engine was also upgraded to the R-2800-8. The Navy ordered 584 F4U-1's on April 2, 1941.
Design
Powerplant
The F4U was powered by a Pratt and Whitney R-2800 engine. This was the most powerful and largest engine available when the F4U was being developed. An engine that powerful required a large propeller, 13 feet and 4 inches in diameter. The propellers used were the three-bladed versions up until the F4U-4 when it was upgraded to a four-bladed propeller.
Wings and Landing Gear
Since the F4U was designed as a carrier-based fighter, the wings needed to be foldable, so the plane would take up less room on an aircraft carrier. In order to allow for the aircraft's wings to fold, the landing gear could not fold into the wings like many aircraft of the day, but would instead need to fold rearward. Unfortunately, due to the humongous 13-foot Hamilton Standard four-bladed propeller, the rearward folding landing gear would need itself to be extremely long in order to maintain propeller arc clearance, threatening the structural stability of the landing gear. To solve all of these problems, the aircraft's wing design was given inverted gull wings, which allowed the length of the landing gear to be reduced.
The F4U was very aerodynamic for its time. It utilized spot welding instead of rivets to decrease drag. It was also the first U.S. Navy aircraft to have landing gear that retracted into a fully enclosed wheel well, and the supercharger air intakes were located in the wings, instead of using scoops that protrude from the aircraft. The Corsair also used fabric to cover the parts of the wing aft of the main spar, the ailerons, rudder, and elevators. All of these factors significantly reduced drag, increasing the aerodynamics of the aircraft. Despite this, when using the flaps, the Corsair could still perform carrier landings, as the flaps could be angled at 60° to decrease speed and still maintain enough lift to properly land.
Technical Issues
The F4U was not without its problems. Many of the issues it faced were related to its ability to be used on aircraft carriers such as having an aft placed cockpit and long "nose" at the front of the aircraft. This configuration reduced the pilot's visibility, which was important during carrier landings. In fact, the pilot could not see the Landing Signal Officer (LSO) for much of the landing approach. In addition, the hydraulically powered cowl flaps could potentially splatter hydraulic fluid onto the windscreen, limiting visibility even further. To prevent fluid splattering the solution was to affix the cowl flaps down permanently. The low visibility upon landing was later solved by the Fleet Air Arm of the Royal Navy.
In addition to the visibility issues, there were other issues involved with landing on a carrier. During a carrier landing, the right-wing would unexpectedly stall and send the aircraft into a spin. When the throttle was quickly turned up the left-wing would drop very quickly, also causing a spin or causing the pilot to lose control. This issue was fixed by adding a stall strip to the right-wing just outboard of the main armament. This strip was added to the leading edge of the wing and allowed the right-wing to stall at the same point as the left-wing. The hydraulic landing gear would also tend to bounce upon landing. This was solved by adding a "bleeder valve" that released hydraulic pressure gradually, allowing the landing gear to absorb some of the contact with the runway and to prevent bouncing upon landing.
Performance
The F4U Corsair performed very well against its contemporary rivals. Compared to the Grumman F6F Hellcat, the F4U was significantly faster. Compared to the Republic P-47 Thunderbolt, the F4U was 13 mph slower, but reached its maximum speed at a lower altitude, giving the F4U an advantage at lower altitudes. All three of these planes used the Pratt and Whitney R-2800 engine.
Service
World War 2
United States
Marine Corps
Royal New Zealand Air Force
In the Pacific, the Royal New Zealand Air Force (RNZAF) was equipped with Curtiss P-40 Warhawks. Although these aircraft had shown their age and weaknesses when compared to the Japanese aircraft they faced, the RNZAF squadrons performed admirably in aerial combat. Because of this, the United States decided to allow New Zealand to use F4U Corsairs since they were not yet being used on carriers. They were first delivered to New Zealand in 1944, replacing P-40 Warhawks and SBD Dauntlesses. Corsairs equipped all ten RNZAF fighter squadrons in the Pacific Because it arrived so late in the war, there were not very many Japanese planes for the RNZAF Corsairs to engage, at least in the zones they operated in. Mostly they supported the ground forces from New Zealand, Australia, and the United States. After the war, in 1945, all but one (No. 14) RNZAF squadrons disbanded. Squadron No. 14 was based in Japan until 1947 when the Corsair was retired from service.
Captured Corsairs
Korean War
United States
"Football War"
The last combat the F4U Corsair saw in its long career was during the 1969 "Football War". This war was fought between Honduras and El Salvador and was presumably initiated after a soccer game between the two countries. The air forces of the two countries were equipped with only propeller-driven aircraft, and the war was the last conflict involving combat between propeller-driven aircraft. On 17 July 1969, Captain Fernando Soto of the Honduran Air Force shot down a Cavalier Mustang and two FG-1 Corsairs of the Salvadoran Air Force. No Honduran aircraft were shot down during the course of the war, even though private American pilots with experience flying P-51s and F4Us were hired to fly combat missions by El Salvador.
US World War 2 Statistics
General
- Total Operational Sorties: 64,051
- Percentage of Total USMC and USN Sorties: 44%
- Sorties from Carrier Decks: 9,581 (15%)
- Air Victories (Kills): 2,140
- Total Air Combat Losses: 189
- Total Ratio of Victories to Losses: 11:1
- Ratio of Kills to Losses Against A6M Zeros: 12:1
- Ratio of Kills to Losses Against Ki-84's, N1K-J's and J2M's: 6:1
- Amount of Bombs Dropped: 15,621 Short Tons (14,171 Metric Tons)
- Percentage of Bombs Dropped by US Fighters: 70%
Losses
- By Aerial Combat: 189
- By Anti-Aircraft Fire: 349
- During Combat Missions: 230
- During Non-Combat Missions: 692
- While on the Ground or Aboard Ships: 164
Aces
Ira C. Kepford
A member of the famed VF-17 "Jolly Rogers" squadron, Kepford achieved a total of 16 confirmed kills in his F4U-1A.
Roger R. Hedrick
A member of VF-17, and later the Commanding Officer of VF-84, he got 12 confirmed kills in an F4U-1A and F4U-1D.
John T. Blackburn
He was the first Commanding Officer of VF-17, credited with 11 kills in his F4U-1A.
Thomas H. Reidy
A member of VBF-83, he was credited with 10 kills.
US Marine Corps
Gregory "Pappy" Boyington
The Marine Corp's top-scoring ace, achieving 22 confirmed kills in an F4U-1A as part of VMF-214.
Kenneth A. Walsh
He had 21 confirmed kills in an F4U-1 and F4U-4, as part of VMF-124. He later was the Operations Officer of VMF-222.
James E. Swett
Serving in VMF-221 he was credited with 8.5 kills in an F4U, sharing one A6M "Zero" kill with another pilot. Before he flew the F4U he became an ace in a day by shooting down 7 planes in one action.
Archie Donahue
He is credited with 12 kills in an F4U while serving in VMF-112.
Notable Squadrons
US Marine Corps
VMF-124
The squadron was declared fully operational on 28 December 1942, even though its pilots only had an average of 25 hours in the Corsair. The first Marine Corsair ace was Kenneth A. Walsh, who had achieved 20 out of his 21 aerial victories as part of VMF-124. The Squadron first fought in the Solomon Islands, and later became the first Marine squadron to be based on an aircraft carrier, along with VMF-213. VMF-124 and VMF-213 became the first Marine squadrons to launch a ground attack off of an aircraft carrier on 3 January 1945, when they struck Formosa and the Ryukyu Islands.
VMF-214 "Blacksheep"
In 1943 the squadron was reinstated under the command of Major Gregory "Pappy" Boyington. They called themselves the Black Sheep. During their combat under Boyington's command, the squadron destroyed or damaged 203 enemy planes, with an official tally of 97 aerial victories. They also destroyed multiple enemy auxiliary ships and enemy installations. The squadron produced nine aces during the war.
VF-17 "Jolly Rogers"
VF-17 was the second US Navy squadron to receive F4U-1 Corsair fighters, in 1943. The Corsair had not been cleared for carrier operations by the time VF-17 was equipped with it, and as a result, the squadron operated off of the ground in the Solomon Islands. They amassed 152 aerial victories, and produced 11 aces. The commander of the squadron was Lieutenant Commander John T. Blackburn. Other notable members of the squadron include Ira C. Kepford and Roger R. Hedrick
Variants
- XF4U-1
- The prototype for the F4U-1. It had a Pratt and Whitney R-2800 engine.
- F4U-1 (Corsair Mk I)
- The first production F4U. It had the “birdcage” canopy and low seating position. It had a more powerful Pratt and Whitney R-2800-8 engine.
- FG-1
- F4U-1 built by Goodyear for the Marine Corps. They had wings that could not be folded.
- F4U-1A (Corsair Mk II)
- This is not an official designation, but was used post-war to differentiate late production F4U-1s from early production F4U-1s. Mid-to-late production Corsairs saw the canopy changed to a clear-view canopy with only 2 frames in order to increase field of vision, and also a new windscreen that was easier to see through. This allowed the rear-view windows to be removed from the design. The pilot’s seat was also raised, to allow better view over the long nose. This was the first design to incorporate the stall strip on the leading edge of the right-wing and the improved landing gear oleo-struts. These changes allowed the Corsair to be used in carrier landings. F4U-1As later incorporated a new R-2800-8W water-injected engine, which was more powerful. F4U-1As in FAA service were known as Corsair Mk II, and had 8 in clipped off their wings, in order to fit on the Royal Navy aircraft carriers.
- FG-1A
- F4U-1As built by Goodyear for the Marine Corps. They had wings that could not be folded.
- F3A-1 (Corsair Mk III)
- F4U-1 license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. Known as the Corsair Mk III in FAA service. None of these Corsairs saw frontline service because of their production defects.
- F4U-1B
- F4U-1s modified for Fleet Air Arm usage. This designation was given post-war.
- F4U-1D (Corsair Mk II)
- An F4U-1 with an R-2800-8W water-injected engine, which gave 250 hp more power. It could carry double the rockets of the F4U-1A, and as such had to have bomb pylons and rocket tabs bolted onto the plane, causing drag. Despite this, it still had a considerable range, as the ability to mount an additional belly drop tank. It had the “blown” canopy, with only a single piece.
- FG-1D (Corsair Mk IV)
- F4U-1D built by Goodyear. It had the wingtips clipped for FAA service.
- F3A-1D (Corsair Mk III)
- F4U-1D license-built by Brewster. Poor quality caused the contract to be terminated by the Navy. This version, although different than the F3A-1, was still known as the Corsair Mk III in FAA service. It had the wingtips clipped for FAA service.
- F4U-1C
- These were F4U-1Ds but had four 20 mm AN/M2 cannons, instead of six .50 in machine guns. Machine guns were preferred for aerial combat, but the 20 mm cannons were proven in a ground attack role.
- F4U-1P
- An F4U-1 but with photo-reconnaissance equipment.
- XF4U-2
- A night fighter variant, with two auxiliary fuel tanks.
- F4U-2
- F4U-1s but with the outboard right machine gun removed and replaced with an Airborne Intercept radar on the outboard starboard wing. It was intended to be a night fighter.
- XF4U-3
- Experimental variant used to test different engines in the Corsair airframe.
- FG-3
- Airframes made by Brewster that were used for the XF4U-3 project.
- XF4U-3B
- Slight modifications were added to the XF4U-3.
- XF4U-4
- This variant incorporated a new engine and cowling.
- F4U-4
- This variant incorporated the new, more powerful, R-2800-18W dual-stage-supercharged engine. The power could be boosted by injecting an alcohol/water concentration to the engine. An air scoop was added to the nose of the plane, and the fuel tanks in the wings were removed. This version had a 4-bladed propeller, instead of a 3-bladed propeller. The windscreen was also changed to flat, bulletproof glass, to reduce distortion.
- F4U-4B
- A version of the F4U-4 modified for FAA use, but was never given to the FAA. Instead, it was used in US service.
- F4U-4C
- F4U-4s with four 20 mm AN/M2 cannons instead of six .50 in machine guns.
- F4U-4E
- Night fighter variant of the F4U-4 with an APS-4 search radar on the starboard wingtip. Many had four 20 mm AN/M2 cannons instead of six .50 in machine guns, but it was not standard.
- F4U-4N
- Night fighter variant of the F4U-4 with an APS-6 search radar on the starboard wingtip. Many had four 20 mm AN/M2 cannons instead of six .50 in machine guns, but it was not standard.
- F4U-4K
- Drone variant of the F4U-4.
- F4U-4P
- Photo reconnaissance variant of the F4U-4.
- XF4U-5
- Had a new engine cowling, among other modifications.
- F4U-5
- A modification of the F4U-4. It incorporated a new R-2800-32(E) engine, a modernized cockpit, all-metal wings, a completely retractable tail wheel, and other modifications.
- F4U-5N
- F4U-5 with a radar.
- F4U-5NL
- Variant of the -5 and -5N modified for operations in a winter environment. It had de-icing boots on the leading edges of the tail and wings.
- F4U-5P
- A long range photo reconnaissance variant of the -5.
- F4U-6/AU-1
- The F4U-6 was a variant designed for ground attack missions for the Marine Corps. It had extra armor for the fuel tank and pilot, and relocated the oil coolers. It also featured a simplified supercharger, in order to optimise it for low altitude flying. It could carry up to 8,200 lbs of bombs, much more than other variants. This caused its top speed to be much lower than other variants. It was later redesignated as the AU-1.
- F4U-7
- An AU-1 modified for use with the French Navy.
- FG-1E
- An FG-1 with radar equipment. Produced by Goodyear.
- FG-1K
- A drone variant of the FG-1.
- FG-3
- An FG-1D with a turbo supercharged engine.
- FG-4
- F4U-4 produced by Goodyear. Never delivered.
- F2G-1
- Goodyear modified F4U-1 with a Pratt and Whitney R-4360, Wasp Major 4-row 28-cylinder radial engine. It had manual-folding wings and a 14 ft propeller. Never entered service.
- F2G-2
- F2G-1 with hydraulically folding wings, a tailhook for carrier landings, and a 13 ft propeller. Never entered service.
Specifications (F4U-4)
General
- Crew: One
- Length: 33 ft 8 in (10.26)
- Height: 14 ft 9 in (4.5 m)
- Wingspan: 41 ft 0 in (12.5 m)
- Wing Area: 314 sq ft (29.17 m2)
- Empty Weight: 9,205 lb (4,238 kg)
- Max. Takeoff Weight: 14,533 lb (6,592 kg)
- Powerplant: 1 × Pratt and Whitney R-2800-18W radial engine, 2,380 hp (1,770 kw)
- Propeller(s):
- 3 or 4-bladed
- 13 ft 4 in (4.06 m) diameter
Performance
- Maximum Speed: 446 mph (718 km/h, 388 kn)
- Stall Speed: 89 mph (143 km/h, 77 kn)
- Range: 1,005 mi (1,617 km, 873 nmi)
- Combat Range: 328 mi (528 km, 285 nmi)
- Service Ceiling: 41,500 ft (12,600 m)
- Rate of Climb: 4,360 ft/min (22.1 m/s)
Armament
- Guns:
- 6 × .50 in (12.7 mm) M2 Browning machine guns, 400 rounds per gun or
- 4 × .79 in (20 mm) AN/M3 cannons, 231 rounds per gun
- Bombs: Up to 4,000 pounds (1,800 kg) and/or
- Rockets: 8 × 5 in (12.7 cm) high velocity aircraft rockets (HVAR)
Operators
ArgentinaArgentine Navy operated 26 F4U-5/5N/5NL Corsairs from 1956 to 1968
Brazil
Brazilian Navy operated 30 F4U-1D from 1950 to 1976
Canada
Royal Canadian Navy operated 130 F4U-1D from 1948 to 1960
Chile
Chilean Navy operated 30 F4U-1D and 20 F4U-4 from 1953 to 1978
El Salvador
Air Force of El Salvador operated 25 F4U/FG-1D from 1957 to 1976
France
French Navy operated 69 AU-1 and 94 F4U-7 from 1954 to 1964
Honduras
Honduran Air Force operated 19 from 1956 to 1979
Netherlands
Royal Netherlands Navy operated 35 F4U-1D from 1943 to 1956
New Zealand
Royal New Zealand Air Force operated 368 F4U-1 and 60 FG-1D from 1944 to 1949
United Kingdom
Royal Navy Fleet Air Arm operated 2,012 Corsairs of all types during World War 2, including 95 Corsair I (F4U-1), 510 Corsair II (F4U-1A), 430 Corsair III (F3A-1D), and 977 Corsair IV (FG-1D)
United States
United States Navy and Marine Corps operated Corsairs of all production variants from 1942 to 1953